Synthesis of the Angiotensin Converting Enzyme Inhibitor (−**)-A58365A via an Isomünchnone Cycloaddition Reaction**

Christopher S. Straub and Albert Padwa*

Department of Chemistry, Emory University, Atlanta, Georgia 30322 chemap@emory.edu

Received April 1, 1999

ABSTRACT

The angiotensin converting enzyme inhibitor (−**)-A58365A (1) was synthesized by a process based on the [3** + **2]-cycloaddition reaction of a phenylsulfonyl-substituted isomu**1**nchnone intermediate. The starting material for this process was prepared from L-pyroglutamic acid and** involved using a diazo-phenylsulfonyl-substituted pyrrolidine imide. Treatment of the diazoimide with Rh₂(OAc)₄ in the presence of methyl **vinyl ketone afforded a 3-hydroxy-2-pyridone derivative which was subsequently converted to the ACE inhibitor in six additional steps.**

The 2(1*H*)-pyridone ring system is a valuable building block in natural product synthesis, $\frac{1}{1}$ as it can act as a common intermediate for the preparation of a wide variety of piperidine, pyridine, quinolizidine, and indolizidine alkaloids.^{2,3} *N*-Alkyl-substituted pyridones have been found to exhibit a wide range of biological activities.⁴ These include anticancer/antitumor activity⁵ as well as cardiovascular⁶ and antiinfective behavior as with HIV-reverse transcriptase inhibitors.7 The pyridone substructure is also found in a large

(2) Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; J. Wiley and Sons: New York, 1992. *The Alkaloids, Specialist Periodical Reports*; The Royal Society of Chemistry: London, 1992. *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1991. *Natural Products Report*; The Royal Society of Chemistry: London, 1993.

(3) Elbein, A. D.; Molyneux, R. J. In *Alkaloids: Chemical and Biological* Perspectives; Pelletier, S. W., Ed.; Wiley: New York, 1981; Vol. 5, pp $1 - 54.$

(4) Sanderson, P. E. J.; Dyer, D. L.; Naylor-Olsen, A. M.; Vacca, J. P.; Gardell, S. J.; Lewis, S. D.; Lucas, B. J., Jr.; Lyle, E. A.; Lynch, J. J., Jr.; Mulichak, A. M. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1497.

(5) McNamara, D. J.; Cook, P. D.; Allen, L. B.; Kehoe, M. J.; Holland, C. S.; Teepe, A. G. *J. Med. Chem.* **1990**, *33*, 2006. Cook, P. D.; Day, R. T.; Robins, R. K. *J. Heterocycl. Chem.* **1977**, *14*, 1295.

(6) Bantick, J. R.; Beaton, H. G.; Cooper, S. L.; Hill, S.; Hirst, S. C.; McInally, T.; Spencer, J.; Tinker, A. C.; Willis, P. A. *Bioorg. Med. Chem. Lett.* **1994**, *4*, 121.

(7) Dolle´, V.; Fan, E.; Nguyen, C. H.; Aubertin, A. M.; Kirn, A.; Andreola, M. L.; Jamieson, G.; Tarrago-Litvak, L.; Bisagni, E. *J. Med. Chem.* **1995**, *38*, 4679.

10.1021/ol9905497 CCC: \$18.00 © 1999 American Chemical Society **Published on Web 05/17/1999**

number of natural products such as camptothecin, δ elastase, δ and thrombin.10 Recently, the 4-hydroxypyridone acids **1** and **2** were obtained from the fermentation broth of a soil bacterium in the Eli Lilly laboratories and were discovered to be ACE inhibitors at nanomolar concentrations.¹¹

Substituted 2-pyridones are generally prepared from acyclic starting materials which often incorporate a Michael

⁽¹⁾ Scriven, E. F. V. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Elmsford, NY, 1984; Vol. 2

⁽⁸⁾ For total synthesis of camptothecin using substituted pyridones as starting materials, see: Comins, D. L.; Hong, H.; Saha, J. K.; Gao, J. *J. Org. Chem.* **1994**, *59*, 5120. Comins, D. L.; Hong, H.; Gao, J. *Tetrahedron Lett.* **1994**, *35*, 5331. Curran, D. P.; Liu, H. *J. Am. Chem. Soc.* **1992**, *114*, 5863.

⁽⁹⁾ Beholz, L. G.; Benovsky, P.; Ward, D. L.; Barta, N. S.; Stille, J. R. *J. Org. Chem.* **1997**, *62*, 1033. Bernstein, P. R.; Gomes, B. C.; Kosmider, B. J.; Vacek, E. P.; Williams, J. C. *J. Med. Chem.* **1995**, *38*, 212.

⁽¹⁰⁾ Sanderson, P. E. J.; Dyer, D. L.; Naylor-Olsen, A. M.; Vacca, J. P.; Gardell, S. J.; Lewis, S. D.; Lucas, B. J.; Lyle, E. A.; Lynch, J. J.; Mulichak, A. M. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1497. Tamura, S. Y.; Semple, J. E.; Reiner, J. E.; Goldman, E. A.; Brunck, T. K.; Lim-Wilby, M. S.; Carpenter, S. H.; Rote, W. E.; Oldeshulte, G. L.; Richard, B. M.; Nutt, R. F.; Ripka, W. C. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1543.

addition as the key synthetic step.^{12,13} However, only a few methods of preparing hydroxy-2(1*H*)-pyridones have been reported,14 and they typically involve harsh conditions that preclude the presence of sensitive functional groups.15 We have recently described a general and flexible entry to a variety of 3-hydroxy-substituted pyridones.¹⁶ The cornerstone of our synthetic plan is the $[3 + 2]$ -cycloaddition of a phenylsulfonyl-substituted isomünchnone intermediate (i.e., **4**).17,18 Once the cycloaddition reaction occurs, the resulting adduct **5** undergoes ready ring opening to give the desired pyridone 6 (Scheme 1).¹⁹ The versatility of the strategy lies

in the fact that by appropriate selection of the diazo precursor **3** and dipolarophile, various groups can be introduced into the N-1, C-4, C-5, and C-6 positions. Moreover, substituents can be incorporated into the C-3 position by conversion of

(11) Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Du Bus, R. H.; Baker, P. J. *J. Antibiot.* **1985**, *38*, 1003. Hunt, A. A.; Mynderse, J. S.; Samlaska, S. K.; Fukuda, D. S.; Maciak, G. M.; Kirst, H. A.; Occolowitz, J. L.; Swartendruber, J. K.; Jones, N. D. *J. Antibiot.* **1988**, *41*, 771. O′Connor, S.; Somers, P. *J. Antibiot.* **1985**, *38*, 993.

(12) Jones, G. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Elmsford, NY, 1996; Vol. 5. Comins, D. L.; Gao, J. *Tetrahedron Lett.* **1994**, *35*, 2819. Sieburth, S. M.; Hiel, G.; Lin, C. H.; Kuan, D. P. *J. Org. Chem.* **1994**, *59*, 80. Schmidhauser, J. C.; Khouri, F. F. *Tetrahedron Lett.* **1993**, *34*, 6685. Sieburth, S. M.; Chen, J. L. *J. Am. Chem. Soc.* **1991**, *113*, 8163.

(13) Comins, D. L.; Gao, J. *Tetrahedron Lett.* **1994**, *35*, 2819. Sieburth, S. M.; Hiel, G.; Lin, C. H.; Kuan, D. P. *J. Org. Chem.* **1994**, *59*, 80. Schmidhauser, J. C.; Khouri, F. F. *Tetrahedron Lett.* **1993**, *34*, 6685. Sieburth, S. M.; Chen, J. L. *J. Am. Chem. Soc.* **1991**, *113*, 8163.

(14) Molenda, J. J.; Jones, M. M.; Johnston, D. S.; Walker, E. M.; Cannon, D. *J. Med. Chem.* **1994**, *37*, 4363.

(15) Meislich, H. *Chemistry of Heterocyclic Compounds*; Interscience Publishers: New York, 1962; Chapter 12, p 509. Tieckelmann, H. *Chemistry of Heterocyclic Compounds*; Intersicence Publishers: New York, 1974; Chapter 12, p 597.

(16) Sheehan, S. M.; Padwa, A. *J. Org. Chem.* **1997**, *62*, 438.

(17) Hamaguchi, M.; Ibata, T. *Tetrahedron Lett.* **1974**, 4475. Hamaguchi, M.; Ibata, T. *Chem. Lett.* **1975**, 499.

(18) Padwa, A.; Marino, J. P., Jr.; Osterhout, M. H. *J. Org. Chem.* **1995**, *60*, 2704. Padwa, A.; Hertzog, D. L.; Nadler, W. R. *J. Org. Chem.* **1994**, *59*, 7072. Marino, J. P., Jr.; Osterhout, M. H.; Price, A. T.; Semones, M. A.; Padwa, A. *J. Org. Chem.* **1994**, *59*, 5518. Padwa, A.; Hertzog, D. L.; Nadler, W. R.; Osterhout, M. H.; Price, A. T. *J. Org. Chem.* **1994**, *59*, 1418. Hertzog, D. L.; Austin, D. J.; Nadler, W. R.; Padwa, A. *Tetrahedron Lett*. **1992**, *33*, 4731.

(19) Padwa, A. *J. Chem. Soc., Chem. Commun.* **1998**, 1417.

(20) For a review on triflate chemistry, see: Ritter, K. *Synthesis* **1993***,* 735.

the hydroxyl functionality to a triflate group,²⁰ followed by a palladium-catalyzed cross-coupling reaction.21 To highlight the method, the above synthetic strategy was applied to the angiotensin converting enzyme inhibitor $(-)$ -A58365A (1).

The first total synthesis of A58365A (**1**) was reported by Danishefsky and Fang in 1989²² and more recently by the Moeller²³ and Clive groups.²⁴ Each of the synthetic routes utilized involved a fundamentally different strategy. Annulation of a vinylogous urethane with α -methylene glutaric anhydride was the key reaction employed in Danishefsky's synthesis.²² In the Moeller approach, an aniodic amide oxidation-iminium ion cyclization sequence was employed for the construction of the bicyclic lactam peptide mimetic.²³ Finally, Clive's method was based on an ene-yne cyclization involving the addition of tributylstannyl radical to a terminal alkyne followed by a subsequent 6-*endo*-*trig* cyclization onto a cyclic enamide. 24 Our interest in establishing phenylsulfonyl-substituted isomünchnones as useful building blocks for 2-pyridones prompted us to apply the method outlined in Scheme 1 toward the synthesis of A58365A.

The four-step conversion of commercially available Lpyroglutamic acid (7) to the isomunchnone precursor 12 was carried out using conventional chemistry. Esterification of **7** with methanol in the presence of Dowex ion-exchange resin gave methyl ester **8** in 98% yield. Treatment of **8** with (phenylthio)acetyl chloride (**9**) in benzene afforded methyl 5-oxo-1-(2-phenylthioacetyl)pyrrolidine-2-carboxylate (**10**) in 87% yield. Oxidation of **10** with Oxone furnished sulfone **11** (67%) which was converted to diazoimide **12** using established diazotization procedures²⁵ in 91% yield. Reaction of **12** with methyl vinyl ketone and a catalytic quantity of $Rh_2(OAc)_4$ in benzene at 80 °C provided the expected 3-hydroxy-2(1*H*)-pyridone **13** in 86% isolated yield (Scheme 2). Cycloadduct **13** was easily converted to the corresponding triflate **14** (94%) by treatment with *N*-phenyltrifluoromethanesulfonamide and triethylamine.²⁶ The synthetic potential of

Reagents: (a) MeOH, Dowex ; (b) PhSCH₂COCI (9), benzene, 80 °C; (c) Oxone, MeOH, 25 °C; (d) p -CH₃CONHC₆H₄SO₂N₃, NEt₃; (e) Rh₂(OAc)₄, CH₂=CHCOCH₃, benzene, 80 °C; (f) (TfO)₂NPh, NEt₃, 25 °C

vinyl triflates has been well-established over the past decade,²⁰ and these compounds have been shown to be suitable substrates in various types of coupling reactions, including Heck reactions.27 Thus, the reaction of **14** with methyl acrylate in the presence of $Pd(PPh₃)Cl₂$ at 25 °C in acetonitrile gave the prop-2-enoate derivative **15** in 86% yield (Scheme 3). Catalytic hydrogenation of **15** proceeded in quantitative yield to afford pyridone **16**. The next step involved the trifluoroperacetic acid induced Baeyer-Villiger oxidation of **16** to give acetate **17** in 96% yield. Compound

Reagents: (g) CH₂=CHCO₂Me, Pd(PPh₃)₂Cl₂, NEt₃; (h) H₂, Pd/C, CHCl₃; (i) H_2O_2 , CF₃CO₂H, 25 °C; (j) PhCH₂OH, toluene, Otera's catalyst, 120 °C; (k) H₂, Pd/C, MeOH.

17 underwent transesterification and acetate cleavage to produce the dibenzyl ester **18** (98%, $[\alpha]^{25}$ _D -146° (CH₂Cl₂, *c* 0.39) when subjected to heating with Otera's catalyst in the presence of benzyl alcohol/toluene.28 Catalytic hydrogenation (Pd/C) of **18** in methanol has already been reported to afford A58365A (**1**) in 96% yield.22

In summary, a formal synthesis of A58365A (**1**) in 11 steps in 32.6% overall yield starting from L-pyroglutamic acid has been achieved. This synthesis underscores the flexibility provided by the $[3 + 2]$ -cycloaddition reaction of phenylsulfonyl isomünchnones. Further utilization of the tandem cyclization-cycloaddition sequence for the stereocontrolled synthesis of other 2-pyridone natural products is under current investigation.

Acknowledgment. We gratefully acknowledge the National Institutes of Health (GM59384-20) for their generous support of this work.

OL9905497

⁽²¹⁾ Stille, J. K. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 508. Scott, W. J.; Stille, J. K. *J. Am. Chem. Soc.* **1986**, *108*, 3033.

⁽²²⁾ Fang, F. G.; Danishefsky, S. J. *Tetrahedron Lett.* **1989**, *30*, 3621. (23) Wong, P. L.; Moeller, K. D. *J. Am. Chem. Soc.* **1993**, *115*, 11434. (24) Clive, D. L. J.; Zhou, Y.; de Lima, D. P. *J. Chem. Soc., Chem. Commun.* **1996**, 1463. Clive, D. L. J.; Coltart, D. M. *Tetrahedron Lett.*

¹⁹⁹⁸, *3*, 2519. Clive, D. L. J.; Coltart, D. M.; Zhou, Y. *J. Org. Chem.* **1999**, *64*, 1447.

⁽²⁵⁾ Regitz, M.; Hocker, J.; Leidhergener, A. *Organic Syntheses*; John Wiley: New York, 1973: Collect. Vol. 5, p 179.

⁽²⁶⁾ McMurry, J. Scott, W. J. *Tetrahedron Lett.* **1983**, *24*, 979.

⁽²⁷⁾ De Meijere, A.; Meyer, F. E. *Angew. Chem., Int. Ed. Engl.* **1994**, *33*, 2379.

⁽²⁸⁾ Otera, J.; Yaus, T.; Kuwabata, A.; Nozaki, H. *Tetrahedron Lett.* **1986**, *27*, 2383.